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SUMMARY

The interleukin-1 receptor I (IL-1RI) is critical for host
resistance to Mycobacterium tuberculosis (Mtb), yet
the mechanisms of IL-1RI-mediated pathogen con-
trol remain unclear. Here, we show that without IL-
1RI, Mtb-infected newly recruited Ly6Ghi myeloid
cells failed to upregulate tumor necrosis factor re-
ceptor I (TNF-RI) and to produce reactive oxygen
species, resulting in compromised pathogen control.
Furthermore, simultaneous ablation of IL-1RI and
TNF-RI signaling on either stroma or hematopoietic
cells led to early lethality, indicating non-redundant
and synergistic roles of IL-1 and TNF in mediating
macrophage-stroma cross-talk that was critical for
optimal control of Mtb infection. Finally, we show
that even in the presence of functional Mtb-specific
adaptive immunity, the lack of IL-1a and not IL-1b
led to an exuberant intracellular pathogen replication
and progressive non-resolving inflammation. Our
study reveals functional interdependence between
IL-1 and TNF in enabling Mtb control mechanisms
that are critical for host survival.

INTRODUCTION

Mycobacterium tuberculosis (Mtb) is one of the leading causes of

human mortality associated with a single infection agent world-

wide. The stereotypic tissue response to infection with Mtb is

the formation of granulomas, a focal inflammatory response

where cell-cell cross-talk coordinates cell movement, retention,

and function of the granuloma structure (Ramakrishnan, 2012).

Previous studies have identified a number of factors and cell

subsets of the innate and adaptive immune systems that are crit-
Imm
ical for host resistance to Mtb (Cooper, 2009; O’Garra et al.,

2013; Ramakrishnan, 2012). It has been demonstrated that

mice individually deficient in tumor necrosis factor (TNF) or tumor

necrosis factor-receptor I (TNF-RI) (Flynn et al., 1995) are

extremely susceptible to low-dose aerosol Mtb infection due to

the fundamental role of TNF-RI signaling in maintaining granu-

loma structure and enabling cell-intrinsic mechanisms of Mtb

control (Cantini et al., 2015; Clay et al., 2008; Diedrich et al.,

2013). It has also been demonstrated that mice deficient in inter-

leukin-1a and IL-1b or IL-1RI (Fremond et al., 2007; Yamada

et al., 2000) are extremely susceptible to low-dose aerosol Mtb

infection. However, it is unclear why TNF, which is abundantly

expressed in the lungs of IL-1-deficient mice, fail to control

Mtb in the absence of IL-1 signaling.

IL-1a and IL-1b are non-homologous protein members of the

IL-1 family cytokines with pleiotropic roles in host immunity,

inflammation, and homeostasis (Dinarello, 2009; Garlanda

et al., 2013). Both IL-1a and IL-1b trigger identical biological re-

sponses after binding to the IL-1RI (Dinarello, 2011). In the

context of Mtb infection, it remains controversial whether IL-1a

or IL-1b plays redundant or non-redundant roles in mounting

optimal pathogen control. For instance, one study demonstrates

that in vivo neutralization of IL-1a, but not IL-1b, renders mice

highly susceptible to Mtb (Guler et al., 2011). In another study,

mice deficient in IL-1b are shown to be as much susceptible to

Mtb as IL-1RI-deficient mice and to succumb to infection within

4 weeks (Mayer-Barber et al., 2010). Moreover, it has been also

proposed that during Mtb infection, both IL-1a and IL-1b might

cooperate in establishing host resistance to Mtb (Mayer-Barber

et al., 2011).

To evaluate functional interdependence between the TNF and

IL-1 pathways and the individual roles of IL-1a and IL-1b ligands

in the control of Mtb infection, we performed bone marrow

cross-transplantations between wild-type mice and mice defi-

cient in proteins of the IL-1, TNF, or both signaling pathways

and analyzed resistance and immuno-pathology of these

chimeric mice using a low-dose aerosol infection with Mtb. We
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Figure 1. IL-1RI Signaling on Hematopoietic Cells Is Required for Host Resistance to Mtb

(A) Survival of indicatedbonemarrowchimeric, gene-deficient, andWTmiceafter infectionwithMtb. n=10 forWT, n=10 forWT-WT,n=12 for Il1r1�/�-WT,n=8 for

Il1r1�/�, n = 6 for Il1r1�/�Il1r1�/�, and n = 20 for Il1a�/�Il1b�/�mice. Experimental groupswere comparedwith the log rank test toWT orWT-WT groups. **p < 0.01.

(B) Expression of cytokines and chemokines in the lungs of mice deficient for indicated genes or WTmice infected with Mtb 30 days p.i. determined by Proteome

Profiler mouse cytokine antibody array. n = 4. Pos-C are dots that show the manufacturer’s internal positive control samples on the membrane. WT-mock: the

sample of a mouse lung without infection.

(legend continued on next page)
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found that IL-1 and TNF play non-redundant and synergistic

roles in mediating cross-talk between hematopoietic and stroma

cells that is critical for host resistance to Mtb. We further demon-

strate that in the presence of functional Mtb-specific adaptive

immunity, the lack of IL-1a and not IL-1b led to an exuberant

intracellular pathogen replication, progressive non-resolving

inflammation, and earlier lethality. Together, these data provide

mechanistic insights into compartment-specific IL-1RI- and

TNF-RI signaling during pulmonary Mtb infection, their functional

interdependence for enabling mechanisms of Mtb control, and

the critical role of IL-1a for long-term host survival during Mtb

infection.

RESULTS

IL-1RI on Hematopoietic Cells Is Required for Host
Resistance to Mtb
Although WT mice or WT mice transplanted with WT bone

marrow did not show susceptibility to Mtb infection, Il1r1�/�

mice, WT mice transplanted with Il1r1�/� bone marrow cells,

and Il1r1�/� mice transplanted with Il1r1�/� bone marrow suc-

cumbed toMtb infection, indicating that IL-1RI on hematopoietic

cells is critical for host resistance to Mtb (Figure 1A). In agree-

ment with previous reports (Fremond et al., 2007; Mayer-Barber

et al., 2011), the analysis of expression of inflammatory cytokines

and chemokines 30 days p.i. showed that TNF, IL-6, and key pro-

inflammatory chemokines were expressed at much higher

amounts in the lungs of Mtb-infected Il1r1�/� and Il1a�/�Il1b�/�

mice, when compared to WT, Il1a�/�, and Il1b�/� mice (Fig-

ure 1B), demonstrating that without functional IL-1RI signaling,

Mtb infection leads to exuberant inflammation and TNF expres-

sion fails to confer protection. In order to understand why IL-1RI-

deficient mice succumb to Mtb in the presence of TNF, we next

infected WT mice transplanted with bone marrow cells from

either WT or Il1r1�/� mice with an Mtb strain that expresses

the red fluorescent protein mCherry and analyzed expression

of TNF-RI and reactive oxygen species (ROS) production in

Mtb-infected cells 17 days p.i. This analysis showed that Il1r1�/�

mice contained higher numbers of Mtb-infected cells in the lungs

(Figures 1C and S1A). This gain in Mtb-infected cells in Il1r1�/�

mice was due to the higher numbers of cells that showed auto-

fluorescence in the 488 channel (488-Auto+; Figures 1D–1F

and S1B), and more than 95% of these cells express CD64

and CD11b monocytic markers and could be further divided

onto distinct CD11c+ (myeloid dendritic cells and alveolar mac-

rophages) and CD11c� (newly recruited monocytes, macro-
(C) Percentage of Mtb-infected mCherry-positive cells in the lungs of WT and Il1

(D) Dot plots of cells isolated from the lungs of Il1r1�/� and WT mice after infect

gatings defining autofluorescent and non-autofluorescent populations. The distri

shown. n = 4.

(E) Images of representative non-autofluorescent (488-Auto�) and autofluoresce

Il1r1�/� mice 17 days p.i., collected with Flow Imager camera.

(F) Percentage of Mtb-infected cells with indicated phenotypes in the lungs of W

(G) Percentage of Mtb-infected Ly6Ghi and Ly6Glo cell population in the lungs of

(H–J) Expression of TNF-RI (H), ROS (I), and mCherry (J) signal on Mtb-infected 4

(K–M) Expression of TNF-RI (K), ROS (L), and mCherry (M) signal on Mtb-infected

(N) Macroscopic evaluation of Mtb bacilli distribution on the sections of lungs iso

Representative fields are shown. n = 5.

For extended data, see also Figure S1.

Imm
phages, and PMNs) populations (Figures 1D and S1C; Wolf

et al., 2007). Using ImageStream technology, we next confirmed

that all cells that appeared mCherry positive by flow cytometry,

including those autofluorescent in the 488 channel, were genu-

inely infected with mCherry-expressing Mtb bacilli (Figure 1E).

Because the gain in Mtb-infected cells in Il1r1�/� mice,

compared to WT mice, was primarily attributable to 488-Auto+

CD64+CD11c� myeloid cells (Figures 1F and S1B), we next

analyzed the cellular composition of this population by using an-

tibodies specific to Ly-6G and CD11b. This analysis showed that

this population was composed of Ly6GhiCD11bhi and Ly6-

GloCD11blo cells (PMNs and newly recruited monocytes and

macrophages, respectively) (Figure S1C). CD64+CD11c�Ly6Ghi

cells represented 33% and 27% of all Mtb-infected cells in WT

and Il1r1�/� mice, respectively (Figure 1G). In contrast, Mtb-in-

fected CD64+CD11c�Ly6Glo cells were nearly absent in WT

mice and their number was significantly higher in Il1r1�/� mice

(4% and 12.5%, respectively). The analysis of cell-specific prop-

erties of these two populations showed that upon Mtb infection

in vivo, the 488-Auto� phenotype associated with uniformly low

TNF-RI expression, ROS production, and pathogen burden in

both WT and Il1r1�/� mice (Figures 1H–1M, 488-Auto� popula-

tions). Upon acquisition of 488-Auto+ phenotype, in WT mice,

CD64+CD11c�Ly6Ghi cells activated high amounts of surface

TNF-RI expression and ROS production and exhibited low Mtb

burden, indicating effective pathogen control (Figures 1H–1J).

In contrast, this population in Il1r1�/�mice activated significantly

lower amounts of TNF-RI and ROS and failed to control the

burden of Mtb at a single-cell level (Figures 1H–1J). The

response of CD64+CD11c�Ly6Glo cells to Mtb infection was

qualitatively different and, although activating high amounts of

TNF-RI and ROS upon transition to autofluorescent phenotype,

this cell population failed to control Mtb burden in both WT

and Il1r1�/� mice, demonstrating that this cell type, consistent

with newly recruited inflammatory monocytes, is intrinsically

permissive to Mtb and failed to establish bactericidal state

even in WT mice. Importantly, this cell population was only

marginally present in WT mice, whereas its proportion was

significantly higher in Il1r1�/� mice (Figure 1G). Analysis of

freshly isolated lung mononuclear cells showed that higher

numbers stained positively with necrotic cell dye in Il1r1�/�

mice, compared to WT mice (Figures S1E and S1F). Further-

more, administration of propidium iodide into Mtb-infected

mice revealed extensive distribution of necrotic cells in granu-

lomas of Il1r1�/� mice but not in WT mice at 30 days p.i. (Fig-

ure S1H). At this time point, the Mtb burden was three orders
r1�/� mice 17 days p.i.

ion with H37Rv and mCherry-expressing H37Rv Mtb strains 17 days p.i. with

bution of autofluorescent mCherry+ cells on CD11c+ and CD64+ populations is

nt (488-Auto+) cells with indicated markers isolated from the lungs of WT and

T and Il1r1�/� mice 17 days p.i. n = 4; **p < 0.01.

WT and Il1r1�/� mice 17 days p.i. n = 4; *p < 0.05, ***p < 0.001.

88-Auto+ and 488-Auto�Ly6Ghi cells. n = 4; *p < 0.05, **p < 0.01, ***p < 0.001.

488-Auto+ and 488-Auto�Ly6Glo cells. n = 4; *p < 0.05, **p < 0.01, ***p < 0.001.

lated from WT and Il1r1�/� mice 30 days p.i. and stained by acid fast staining.

unity 43, 1125–1136, December 15, 2015 ª2015 Elsevier Inc. 1127



Figure 2. Effective Control of Pulmonary Mtb Infection Is Enabled through IL-1-TNF-Dependent Cytokine-Stroma Cross-talk

(A) Survival of indicated bonemarrow chimeric mice after infection withMtb. n = 5–7 per experimental group. Experimental groups were compared to control WT-

WT group with the log rank test. **p < 0.001. Abbreviations are as follows: Med. survival, median survival in days p.i. for groups; n.d., not defined prior to

termination of the experiment.

(B and C) Expression of indicated cytokines and chemokines in primary bone marrow macrophages (B) or immortalized mouse lung (MLg) cells (C) after their

treatment with IL-1b, TNF, heat-killed Mtb (H.k. Mtb), or their combinations. Cells were analyzed 24 hr after treatment with Proteome Profiler mouse cytokine

antibody array. n = 3. Pos-C are dots that show themanufacturer’s internal positive control samples on themembrane. Control cells were treated with media only

(Mock).

(D) Expression of IL-1a on the surface of bone marrow macrophages after their treatment with LPS (50 ng/ml) or heat-killed Mtb 4 hr after stimulation and

determined by flow cytometry.

(E) Production of CXCL1 chemokine by mouse lung epithelial cell line LA4 after treatment with recombinant mouse IL-1a with or without prior incubation of cells

with anti-IL-1a monoclonal Ab (mAb). The amount of CXCL1 was determined by ELISA. n = 4; *p < 0.01.

(F) Production of CXCL1 chemokine by LA4 cells after their co-culture with LPS-treated bonemarrowmacrophages fromWT,Casp1�/�, orCasp1�/�Il1a�/�mice

stimulated to produce membrane-bound IL-1a (mem-IL-1a) with or without addition of anti-IL-1a mAb. n = 4; *p < 0.01.

(G) Expression of indicated cytokines and chemokines in MLg cells after their co-culture with LPS-treated bone marrow macrophages from Casp1�/� or Casp1�/�

Il1a�/�mice, stimulated toproducemembrane-bound IL-1a (C1-memIL-1aorC1.Il1a-memIL-1a, asa negativecontrol),withorwithout the additionof TNF.Cellswere

(legend continued on next page)
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of magnitude higher in Il1r1�/� mice, compared to WTmice (Fig-

ure S1G), and acid-fast staining of lung sections revealed high

numbers of Mtb bacilli localized in cells with interstitial monocyte

morphology (Figure 1N).

Together, these data indicate that the lack of IL-1RI on he-

matopoietic cells results in inability of CD64+CD11b+

CD11c�Ly6Ghi Mtb-infected cells to upregulate protective

amounts of TNF-RI and trigger ROS production, resulting in

compromised cell-intrinsic Mtb control. This further associates

with the recruitment of Mtb-permissive CD64+CD11b+

CD11c�Ly6Glo interstitial monocyte cell pool, exuberant Mtb

replication, and early lethality despite abundant TNF expression.

Monocyte-Stroma Cross-talk through IL-1RI and TNF-RI
Is Required for Optimal Resistance to Mtb
In order to define the source of IL-1 and TNF and the direction-

ality of host-protective IL-1RI and TNF-RI signaling, we cross-

transplanted WT mice with bone marrow from TNF- or TNF-RI-

deficient animals. In agreement with earlier studies, mice

deficient in TNF or TNF-RI in hematopoietic cells were highly

susceptible to Mtb (Figure 2A; Flynn et al., 1995). We further

found that Tnf�/� and Tnfr1�/� mice transplanted with WT

bone marrow were also more susceptible to Mtb infection,

compared to WT mice transplanted with WT bone marrow,

demonstrating that TNF from and TNF-RI on stromal cells were

also needed for optimal protection from Mtb (Figure 2A). Treat-

ment of bone-marrow-differentiated macrophages or immortal-

ized mouse lung epithelial (MLg) cells with IL-1b, TNF, and/or

heat-killed Mtb (as likely agonists during progressive Mtb infec-

tion) showed that combination of IL-1b+TNF or heat-killed Mtb+

TNF resulted in the most potent activation of TNF and IL-1a,

among other cytokines and chemokines in both cell types (Fig-

ures 2B and 2C).

Because IL-1a can function as a membrane-bound cytokine,

we treated bone marrow macrophages with LPS or heat-killed

Mtb and stained cells with anti-IL-1a Abs. This staining showed

that both treatments produced IL-1a-specific staining on non-

permeabilized cells (Figure 2D). To analyze whether mem-

brane-IL-1a is biologically active, we exposed reporter cell line

LA4 (which produces CXCL1 chemokine in response to recom-

binant IL-1 [Figure 2E]) to bone marrow macrophages from

WT, Casp1�/�, or Casp1�/�Il1a�/� (as negative control) mice

treated to produce membrane-bound IL-1a and confirmed that

membrane-bound IL-1a on macrophage cells was biologically

active and its CXCL1-stimulating activity on LA4 cells could be

blocked by anti-IL-1a antibodies (Figure 2F). Moreover, and

similar to cell treatment with IL-1b+TNF and heat-killed Mtb+

TNF (Figure 2C), MLg cells treated with a combination of TNF

and macrophage cells presenting membrane-bound IL-1a led

to the most potent activation of cytokines and chemokines

when compared to individual treatments (Figure 2G). To ulti-

mately test whether simultaneous IL-1RI and TNF-RI signaling

to and from stromal cells is required for host resistance to
analyzed 24 hr after treatment with Proteome Profiler mouse cytokine antibody arr

samples on the membrane. Control cells were treated with media only (Mock).

(H) Survival of indicated bonemarrow chimeric mice after infection withMtb. n = 5–

WT group with the log rank test. **p < 0.001. Abbreviations are as in (A).

Error bars represent SEM.

Imm
Mtb in vivo, we cross-transplanted Il1r1�/� or Il1r1�/�Tnfr1�/�

mice with WT bone marrow. Whereas Il1r1
�/�

mice trans-

planted with WT bone marrow survived up to 100 days p.i.

(Figure 2H), WT bone marrow failed to rescue Il1r1�/�Tnfr1�/�

mice, which succumbed to infection with median survival of

38 days. This median survival was significantly lower than

that observed in Tnfr1
�/�

mice transplanted with WT bone

marrow (58 days), demonstrating that both IL-1RI and TNF-

RI signaling on stroma cells are synergistically required for

resistance to Mtb.

IL-1a Mediates Host Resistance to Mtb in a Non-
redundant Fashion
To define the role of individual IL-1RI ligands during the course of

Mtb infection, we infected mice deficient in IL-1RI, IL-1a (Horai

et al., 1998), IL-1ab (Horai et al., 1998), or IL-1b (Shornick

et al., 1996) with Mtb. Il1r1�/� and Il1a�/�Il1b�/� mice suc-

cumbed to infection with a median survival of 28 and 35 days

(Figure 3A). There was a significant divergence in the survival

phenotype between Il1a�/� and Il1b�/� mice, which succumbed

to Mtb infection with a median survival of 95 and 152 days p.i.,

respectively (Figure 3A). These results were reproduced with

more virulent Mtb Erdman strain and with highly virulent W-Bei-

jing SA161 strain (Figures S2A and S2B). Bacterial burden anal-

ysis in the lungs of WT mice showed a plateau of�106 CFUs per

lung at 30 days p.i., and infection was controlled at this level for

more than 200 days. In contrast, Il1r1�/� and Il1a�/�Il1b�/� mice

reached a bacterial burden of 108 CFUs by 30 day p.i., and

Il1a�/� mice reached 108 CFUs by 90 days p.i. (Figure 3B). The

Mtb burden in the lungs of Il1b�/� and Casp1�/�Casp11�/�

mice was not different from mice in the control group (Fig-

ure S2C). Hematoxylin and eosin and acid-fast staining of

lung sections revealed that by 60 days p.i. in WT mice, defined

granulomas containing few Mtb bacilli were formed. In

contrast, lungs in Il1a�/� mice contained large inflammatory le-

sions with highly diffuse structure and cells with numerous

bacilli were dispersed throughout the lung parenchyma (Fig-

ure 3C). Evaluation of lung histopathology revealed worsening

of histopathology score (Figures 3D and S2D) and progressive

decline in inflammation-free airway space in the lungs of

Il1a�/� mice (Figure 3E). Collectively, our analyses show that

although within the first 5 weeks p.i. IL-1RI ligands can play

compensatory roles in mediating host resistance to Mtb and

mice deficient in either IL-1a or IL-1b survive beyond

35 days p.i., IL-1a and IL-1b play non-redundant roles at later

times after infection when deficiency in IL-1a compromises

host resistance to a significantly greater degree, compared

to deficiency in IL-1b.

Mice Deficient in IL-1 Ligands Develop Functional
Mtb-Specific Adaptive Immunity
The delayed susceptibility of Il1a�/� mice to pulmonary Mtb

infection could be explained by a requirement of IL-1a for
ay. n = 3. Pos-C are dots that show the manufacturer’s internal positive control

7 per experimental group. Experimental groups were compared to controlWT-
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Figure 3. IL-1a and IL-1b Play Distinct Roles

in Mediating Long-Term Resistance to Mtb

(A) Survival of indicated gene-deficient mice after

infection withMtb. n = 12 forWT, n = 14 for Il1r1�/�,
n = 13 for Il1a�/�Il1b�/�, n = 12 for Il1a�/�, and n = 9

for Il1b�/� mice. **p < 0.01.

(B) Bacterial loads in the lungs of Mtb-infected

mice as evaluated by plating serial dilutions of lung

homogenates on 7H10 agar. Data are represen-

tative of three independent experiments with five

mice per experimental group per time point. *p <

0.01.

(C) Lung histopathology in WT and Il1a�/� at

60 days after infection with Mtb analyzed after

hematoxylin and eosin (H&E) staining (left). Right

panels show lung sections stained with acid-fast

staining with Mtb bacilli indicated by arrows. The

representative images after H&E (left) and acid fast

(right) staining are shown. Scale bars represent

50 mm.

(D) Quantitative representation of the lung histo-

pathology in WT, Il1a�/�, Il1b�/�, and

Il1a�/�Il1b�/� mice at 30, 60, and 90 days after

infection with Mtb analyzed after hematoxylin

and eosin (H&E) staining using histopathology

score scale shown in Figure S2D. Four consec-

utive sections of the lungs at three depth levels

per each mouse were evaluated. The histopa-

thology score was averaged for five mice per

each experimental group per time point. *p <

0.05.

(E) Quantitative representation of the inflammation-free airway space in the lungs of WT, Il1a�/�, Il1b�/�, and Il1a�/�Il1b�/� mice at 30, 60, and 90 days after

infection with Mtb analyzed after hematoxylin and eosin (H&E) staining. Four consecutive sections of the lungs at three depth levels per each mouse were

evaluated. The data were averaged for five mice per each experimental group per time point. *p < 0.05.

Error bars represent SEM. For extended data, see also Figure S2.
an effective adaptive immune response (Ben-Sasson et al.,

2009). To test this hypothesis, we used MHC class I and II

tetramers to track CD8+ and CD4+ T cells recognizing Mtb im-

munodominant MHC class I (TB10.44-11:K
b) and MHC class II

(ESAT-64-17:I-A
b)-restricted T cell responses in the lungs of

WT, Il1a�/�, and Il1a�/�Il1b�/� mice. At 30 days and

60 days p.i., this analysis revealed similar frequencies of

tetramer-binding CD4+ and CD8+ T cells in all groups (Figures

4A–4D and S3). To determine the frequency of IFN-g-produc-

ing T cells in vivo, we also performed direct ex vivo intracel-

lular IFN-g staining on freshly isolated lung lymphocytes in

the absence of in vitro stimulation (Shafiani et al., 2010).

This analysis revealed significantly higher proportions of IFN-

g-producing cells within the tetramer-binding CD4+ and

CD8+ populations of Il1a�/� and Il1a�/�Il1b�/� mice,

compared to control group, at 30 days p.i. (Figures 4B and

4D). The higher frequency of IFN-g-producing T cells in Il1a�/�

and Il1a�/�Il1b�/� mice demonstrate that T cells from these

strains are not intrinsically deficient in their ability to express

IFN-g in vivo. In vitro stimulation of lung lymphocytes, freshly

isolated from Mtb-infected WT and Il1a�/� mice, with the anti-

CD3 and anti-CD28 Abs, ESAT-64-17, or TB10.44-11 peptides

did not reveal any differences in the proportions of IFN-g- or

TNF-producing CD4+ and CD8+ T cells between the groups

(Figures 4E and 4F). Therefore, these analyses show that the

development of Mtb-specific adaptive immunity does not

depend on IL-1 cytokines.
1130 Immunity 43, 1125–1136, December 15, 2015 ª2015 Elsevier In
The Lack of IL-1a-IL-1RI Signaling Leads to a Non-
protective Highly Inflammatory State and Premature
Lethality
Gross examination of the Mtb-infected mice showed that by

90 days p.i., the wet lung weight for Il1a�/� mice exceeded

that for WT animals by 180% (p < 0.01, Figure 5A) and the num-

ber of mononuclear cells harvested from the lungs of Il1a�/�

mice was significantly greater than from the WT mice both at

60 and 90 days p.i. (p < 0.01, Figure 5B).The frequency of Ly-

6G+Ly-6C+ polymorphonuclear (PMN) leukocyte population at

this late time point was lower in Il1a�/� mice (1.88%) compared

to WT animals (3.14%, p < 0.05, Figure 5C), excluding the possi-

bility that the pulmonary pathology in Il1a�/� mice is associated

with neutrophilic inflammation. This analysis also revealed that

the majority of leukocytes purified from the lungs of Il1a�/�

mice expressed Ly-6C marker, associated with inflammatory

monocytes, macrophages, and dendritic cells (DCs) (De Trez

et al., 2009; Mayer-Barber et al., 2011; Swirski et al., 2009). To

better define the in vivo activation status of monocytes accumu-

lated in the lungs of WT and Il1a�/� mice after Mtb infection, we

assessed isolated lung cells for expression of CD11b and

CD11c, as well as Ly-6C and CD40 as markers associated

with cellular activation. We observed a dramatic increase in Ly-

6C expression by both CD11b+ and CD11c+ cell populations

isolated from Il1a�/� mice, compared to WT animals (p < 0.01,

Figure 5D). In addition, the population of CD11chiLy-6Cint mono-

cytes observed in WT was absent in Il1a�/� mice (population a,
c.



Figure 4. Mice Deficient in IL-1RI Ligands

Develop Functional Pathogen-Specific

Adaptive Immunity

(A) Representative dot plots showing the propor-

tion of IFN-g-producing cells in populations of

ESAT64-17:I-A
b-specific CD4+ T cells purified from

the lungs of WT, Il1a�/�, and Il1a�/�Il1b�/� mice at

30 days after Mtb infection. n = 4.

(B) Quantitative representation of data shown in

(A). *p < 0.001. Abbreviation is as follows: n.s., not

significant.

(C) Representative dot plots showing the propor-

tion of IFN-g-producing cells in populations of

TB10.4+:Kb-specific CD8+ T cells purified from the

lungs of WT, Il1a�/�, and Il1a�/�Il1b�/� mice at

30 days after Mtb infection. n = 4.

(D) Quantitative representation of data shown in

(C). *p < 0.001. Abbreviation as in (B).

(E) Flow cytometry analysis of INF-g and TNF

expression by CD4+ andCD8+ T cells purified from

the lungs of WT or Il1a�/� mice 60 days after

infectionwithMtb and re-stimulatedwith indicated

stimuli in vitro. Purified cells were stimulated with

the media only (Mock), a mixture of anti-CD3 and

anti-CD28 antibodies, or synthetic ESAT6 (ESAT-

64–17 peptide) or TB10.4 (TB10.44–11 peptide)-

specific peptides, respectively. Cumulative data

showing the average percentages of lung CD4+ or

CD8+ T cells producing IFN-g and TNF in response

to indicated stimuli in individual mice (three mice

per group) are shown. No statistically significant

differences in in vitro responses to analyzed stimuli

between cells purified from WT and Il1a�/� mice

were found.

Error bars represent SEM. For extended data, see

also Figure S3.
Figure 5D). The analysis of CD40 expression on lung leukocytes

showed that after Mtb infection, the proportion of highly acti-

vated CD11chiCD40hi monocytes was more than 2-fold higher

in Il1a�/� mice compared to WT animals (Figure 5E). Further-

more, a distinct population of CD11chiCD40lo monocytes that

was observed in WT animals was completely missing from the

lungs of Il1a�/� mice (population b, Figure 5E).

Next,wegeneratedbonemarrowchimeras inwhich lethally irra-

diated WT mice were transplanted with either WT or Il1a�/� bone

marrow cells. Five months after hematopoietic reconstitution,

chimericmicewere infectedwithMtbandLy-6CandCD40marker

expression on their CD11c+ cells were analyzed 90 days p.i. We

observed that CD11c+ cells in chimeric mice recapitulated the

phenotypes observed in mice fromwhich the donor bonemarrow

cells were derived (Figure 5F). Collectively, these data show that in

IL-1a-deficientmice, thehigher inflammatory statedoesnot corre-

late with improved resistance to Mtb but rather is associated with

progressivenon-resolvingmonocytic inflammation thatconstrains

free airway space and leads to premature lethality.

Restoration of IL-1aExpression inCD11c+Cells of Il1a–/–

Mice Alleviates Inflammation and Improves Survival
after Mtb Infection
To determine whether and what kind of Mtb-infected cells ex-

press IL-1a in the lungs of Mtb-infected mice, we analyzed
Imm
sections of lungs from Mtb-infected mice stained with fluores-

cent IL-1a-specific antibody and polyclonal Mtb-specific anti-

body or antibodies for various cellular markers by confocal mi-

croscopy (Di Paolo et al., 2009). At 60 days p.i., those cells

that stained positive for Mtb antigens also stained positive

for IL-1a (Figure 6A), and IL-1a-staining co-localized with

CD11c+ and CD11b+ cells but not with CD3+ or Gr1+ cells

(Figure 6B).

Because the majority of lung leukocytes including alveolar

macrophages, immature DCs, and activated DCs express

CD11c, we next determined whether the restoration of IL-1a

expression specifically in CD11c+ cells would suffice to rescue

the susceptibility of Il1a�/� mice to Mtb infection. We utilized a

foamy virus vector-based stable gene transfer approach (Fig-

ure S4A; Josephson et al., 2002), where mouse IL-1a gene

was expressed under the control of a minimal Itgax promoter

(Ni et al., 2009). CD11chiCD40lo monocyte population was

restored in Mtb-infected Il1a�/� mice transplanted stem cells

transduced with Itgax-IL-1a virus (Figure 6C) but not Itgax-

stop-IL-1a virus (Figure 6D). Importantly, the median survival of

Il1a�/� mice transplanted with Itgax-stop-IL-1a vector-trans-

duced stem cells was only 55 days, whereas 8 out of 9 Il1a�/�

mice transplanted with hematopoietic stem cells transduced

with Itgax-IL-1a virus mice survived beyond 80 days after Mtb

infection (p < 0.001, Figure 6E). Therefore, our data show that
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Figure 5. The IL-1a-Deficient Mice Develop Non-resolving Monocytic Inflammation

(A) The weight of lungs harvested from WT and Il1a�/� mice at 90 days after Mtb infection. n = 30; **p < 0.01.

(B) Total number of mononuclear cells purified from lungs of WT are Il1a�/� mice at indicated times after Mtb infection. n = 5; *p < 0.05, **p < 0.01.

(C) Flow cytometry dot plots of the distribution of Ly-6C- and Ly-6G-expressing cell subsets in the lungs of WT and Il1a�/� mice 90 days after Mtb infection. The

average percentage of Ly-6C+ or Ly-6C+Ly-6G+ populations are shown for each strain. n = 4.

(D) Analysis of Ly-6C expression on CD11b- and CD11c-expressing subsets of mononuclear cells purified from the lungs of Mtb-infected WT and Il1a�/� mice.

Median intensity of Ly-6C staining on CD11b+ and CD11c+ (population b) subsets are shown in histogram plots on the right. n = 4. a and b designate individual Ly-

6C+ cell populations expressing different amounts of CD11c.

(E) Analysis of CD40-expressing CD11c+ cell subsets in the lungs of WT and Il1a�/� mice after Mtb infection. The average percentage of CD11c+CD40hi

(population a) and CD11chiCD40lo (population b) subset are shown. n = 4.

(F) Flow cytometry dot plots of CD11c+CD40+ cells in the lungs of bone marrow chimeric WT mice, transplanted with either WT or Il1a�/� bone marrow cells.

Recipient WT mice were lethally irradiated and transplanted with bone marrow cells from either WT or Il1a�/� mice. Five months after the bone marrow trans-

plantation, mice were infected with Mtb and indicated cell subsets were analyzed in the lungs 80 days after infection. Average percentage of CD11c+CD40hi and

CD11chiCD40lo are shown. n = 3.

Error bars represent SEM.
cell-type-specific restoration of IL-1a expression in CD11c+ cells

in Il1a�/� mice results in lung cell phenotypes comparable to WT

mice and prolonged survival after Mtb infection.

IL-1a Is Required for Intracellular Control of Mtb
Replication at a Single-Cell Level In Vivo via Cell-
Extrinsic Mechanism
To reveal themechanism of IL-1a-mediated control of Mtb resis-

tance, we analyzed the dynamics of Mtb replication in vivo.

Quantification of Mtb bacilli on acid-fast-stained sections of

lungs revealed that the number of bacilli per high power view

field rapidly increased and peaked by 30 days p.i. in all groups

(Figure 7A). Of note, although granulomatous areas in the lungs
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expanded continuously over time (Figures 3D and 3E), by

60 days p.i., the number of bacilli per view field drastically

declined in WT mice and remained low until 100 days p.i.,

implying the effective control of Mtb. In contrast, the number

of bacilli in lung sections was significantly higher for Il1a�/�

and Il1a�/�Il1b�/� mice at 30 days p.i., compared to WT animals

(Figure 7A), suggesting that these mice were deficient in their

ability to control Mtb replication during early infection. Of note,

as in WT animals, the number of bacilli per view field in Il1a�/�

mice declined to a similar degree between days 30 and 60 p.i.,

but it increased significantly again by 100 days p.i.

Detailed evaluation of lung sections of Il1a�/� and WT mice at

day 60 p.i. revealed that in Il1a�/� mice, more than 80% of
c.



Figure 6. Restoration of IL-1a Expression in

CD11c+ Cells Alleviates Pulmonary Mtb Sus-

ceptibility Phenotype of IL-1a-Deficient Mice

(A) Confocal microscopy analysis of IL-1a expression

inMtb-infected cells of lung granulomas 60 days after

infection on frozen OCT-embedded sections of

lungs. IL-1a-specific antibody staining was devel-

oped with Cy2-labeled secondary antibody (green).

Mtb antigens were stained with polyclonal primary

antibody and developed with Cy3-labeled secondary

antibody (red). Mtb-infected cells stained positive

with IL-1a antibody are indicated by arrows. Scale

bars represent 20 mm. Confocal images were ob-

tained with a Zeiss 510 Meta Confocal microscope.

Representative fields are shown. n = 4.

(B) Confocal microscopy analysis of IL-1a expression

in cells of lung granulomas 60 days after infection on

frozen OCT-embedded sections of lungs. IL-1a-spe-

cific antibody staining was developed with Cy2-

labeled secondary antibody (green). CD11b, CD11c,

CD3, and Gr1 antigens were stained with rat mono-

clonal primary antibody and developed with Cy3-

labeled secondary antibody (red). Scale bars repre-

sent 20 mm. Representative fields are shown. n = 4.

(C and D) Analysis of CD40-expressing CD11c+ cell

subsets in the lungs of Il1a�/� mice transplanted with

foamy-virus-infectedhematopoietic stemcells 60days

after Mtb infection. The average percentages of

CD11c+CD40hi and CD11chiCD40lo subset are shown.

(E) Survival of mice transplanted with CD11c-IL-1a- or

CD11c-stop-IL-1a-foamy virus-transduced hemato-

poietic stem cells after their infection with Mtb. n = 10

for each experimental group. **p < 0.001. Groupswere

compared with a log rank test.

For extended data, see also Figure S4.
individual Mtb-infected cells contained more than four bacilli per

cell, whereas inWT animals, only 45%of infected cells contained

more than four bacilli (Figures 7B and 7C). Furthermore, electron

microscopy analysis showed that Mtb bacilli in Il1a�/� mice

could be found in clusters (Figures 7D and S5), suggesting bac-

terial replication in vivo. Using a previously described ‘‘Mtb repli-

cation clock’’ approach to quantify the rate of Mtb replication

in vivo (Gill et al., 2009), we calculated Mtb replication rates in

Il1a�/� and WT mice. Between days 1 and 11 p.i., the Mtb pop-

ulation in the lungs of Il1a�/� mice replicated at a rate of 0.77 per

day, corresponding to a 31.17 hr generation time. In contrast,

Mtb population in the lungs of WT mice replicated at a signifi-

cantly slower rate of 0.55 per day, corresponding to 43.64 hr

generation time (p < 0.01, Figure 7E).

We hypothesized that if the defect in Mtb replication control in

Il1a�/� mice is entirely cell intrinsic, it should be possible to be

reproduced in vitro. We differentiated macrophages from the

bone marrow of WT or Il1a�/� mice, infected them with Mtb,

and analyzed the bacterial burden over time. We also treated

Mtb-infected cells with IL-1a, IFN-g, or a combination of both

to determine whether these cells were deficient in restricting

Mtb replication even in the presence of these exogenous cyto-

kines. We found that Mtb replicated equally efficiently in both

WT and Il1a�/� macrophages. Furthermore, in agreement with

an earlier study, IFN-g was highly effective at restricting Mtb

replication in vitro (MacMicking et al., 2003), and WT and Il1a�/�

macrophages were equally responsive to IFN-g and exhibited
Imm
reduced Mtb CFUs (Figures S5B and S5C). The addition of IL-

1a to Mtb-infected cells did not restrict bacterial growth. Taken

together, these data show that Il1a�/� mice fail to control Mtb

replication at a single-cell level and this inability to control Mtb

replication is not cell intrinsic.

DISCUSSION

In this study we have analyzed the functional role of the compart-

ment-specific IL-1RI and TNF-RI signaling and the individual

contribution of IL1-RI ligands in mediating host resistance to pul-

monary Mtb infection in mice. Numerous previous studies

demonstrated that TNF and/or TNF-RI expression in hematopoi-

etic cells is absolutely required for the host resistance to Mtb.

Indeed, WT mice transplanted with bone marrow from Tnf�/�

or Tnfr1�/� mice were shown to be extremely susceptible to

Mtb infection and succumb in 4 weeks. We report here that

TNF from and TNF-RI on stromal cells are also required to

mediate optimal host resistance to Mtb. Although TNF-RI

signaling is pivotal for protective immunity against Mtb (Flynn

et al., 1995), abundant TNF expression in the lungs of IL-1RI-

deficient mice fails to provide protection and Il1r1�/� mice also

succumb to Mtb infection within 4 weeks (Fremond et al.,

2007; Sugawara et al., 2001). Collectively, these results obtained

with mice deficient in individual components of distinct molecu-

lar pathways indicate that these cytokines cannot fully compen-

sate for the lack of one another, thus highlighting their
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Figure 7. IL-1a Is Required for Intracellular

Control of Mtb Replication In Vivo

(A) The number of Mtb bacilli on acid fast-stained

sections of mouse lungs at indicated time point.

The numbers of bacilli were counted for seven view

fields at four tissue depth levels per mouse and

were averaged for five mice per experimental

group per time point. *p < 0.05, **p < 0.01.

(B) Representative fields of granulomas with Mtb-

infected cells (depicted by stars) in the lungs of WT

and Il1a�/�mice at 60 days p.i. Lung sections were

stained with acid fast to visualize Mtb bacilli (pink).

(C) Quantitation of cells containing fewer than or

more than four Mtb bacilli on the sections of lungs

from WT or Il1a�/� mice 60 days p.i. **p < 0.01.

Cells were quantified on lung sections as

described in (A).

(D) Electron microscopy analysis of cells infected

with Mtb in the lungs of Il1a�/� mice 60 days p.i.

Left: original magnification 5,0003; right: selected

area of an infected cell at magnification of

30,0003. Representative cell is shown. n > 50.

(E)Mtb replication rate betweendays 1 and11 in the

lungs of WT and Il1a�/� mice determined based on

pBP10plasmid frequencyandpreviouslydescribed

mathematical model (Gill et al., 2009). **p < 0.01.

Error bars represent SEM. For extended data and

the model, see also Figures S5 and S6.
non-redundant and synergistic roles in mounting effective pro-

tection from Mtb.

It was recently proposed that the mechanism of IL-1-depen-

dent control of Mtb is related to COX2-dependent synthesis of

prostaglandin E2 (PGE2), which, in turn, suppresses IFN-I, which

has pro-pathogenic properties (Mayer-Barber et al., 2014). How-

ever, earlier studies on leukocyte dynamics in the lungs of mice

at early time points after Mtb infection show that the likely pro-

pathogenic function of IFN-I depends on its ability to recruit

Mtb-susceptible monocyte subsets to the lungs (Desvignes

et al., 2012). Furthermore, Ifnar1�/� mice had lower pathogen

burden in the lungs 18 days p.i. and demonstrated no difference

in bacterial burden at 24 days p.i. compared to WT mice (Des-

vignes et al., 2012). These data suggest that IFN-I signaling is

likely to be dispensable for early cell-intrinsic pathogen control

and unlikely to be relevant to mechanisms allowing for exacer-

bated replication of Mtb in the lungs of Il1r1�/� mice that suc-

cumb by 4 weeks p.i.

Here we found that IL-1 and TNF signaling to and from the he-

matopoietic and stromal compartments cooperated to control

early Mtb infection. When hematopoietic cells lacked IL-1RI

signaling, the mice were severely susceptible to Mtb infection

and the presence of TNF could not compensate for this defi-

ciency. Our data show that when IL-1RI is completely lacking,

a population of bona fide neutrophils with CD11b+

CD11c�Ly6Ghi markers in Mtb-infected mice fail to upregulate

TNF-RI and produce ROS, leading to significantly higher bacte-

rial burden and higher necrotic death in vivo, thus suggesting

that this specific population of cells might require IL-1RI-depen-

dent licensing to upregulate TNF-RI and induce ROS production

in vivo. The excessive Mtb replication and necrotic death led to

hyperinflammation and the recruitment to the lungs of CD64+

CD11b+Ly6Glo monocytes, which were highly permissive to
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Mtb irrespective of high amounts of TNF-RI or ROS production.

The population of highly Mtb-permissive CCR2+ monocytes as

propagators of mycobacterial infection has been recently

described and is consistent with our findings (Cambier et al.,

2014; Lyadova et al., 2010). We further found that the exposure

of immortalized mouse lung epithelial cells to a combination of

IL-1b and TNF or heat-killedMtb and TNF resulted in a robust up-

regulation of TNF and IL-1a expression in these non-hematopoi-

etic cells. It is noteworthy that although the lack of either TNF-RI

or IL-1RI on stromal cells allowed for relatively long survival of

mice, the lack of both of these receptors simultaneously on stro-

mal cells resulted in the collapse of host resistance despite of the

presence of both receptors on WT hematopoietic cells. Taken

together, these data provide direct evidence for non-redundant

and synergistic roles of IL-1RI- and TNF-RI-dependent signaling

in mediating cross-talk between stroma and hematopoietic cells

that is necessary for the optimal control of Mtb infection.

Our study also revealed that IL-1a, a key cytokine implicated in

driving host responses to cell damage and sterile inflammation

(Chen et al., 2007), plays a critical and non-redundant role in

host protection against pulmonary Mtb in a non-cell-intrinsic

manner. The Il1a�/� mice succumb consistently earlier than

Il1b�/�mice upon infectionwithMtb strains of different virulence.

Although TNF signaling was earlier implicated in maintaining

M. marinum granuloma structure in zebrafish model, TNF

signaling is not required for granuloma formation (Clay et al.,

2008). During chronic Mtb infection of Il1a�/� mice, we observed

large diffuse inflammatory lesions and dispersed distribution of

Mtb-infected cells, suggesting an important role of IL-1a-driven

cell-cell cross-talk for coordinating protective granuloma forma-

tion or maintenance. IL-1a can function as a plasma membrane-

bound cytokine (Dinarello, 2009; Huleihel et al., 1990; Kurt-Jones

et al., 1985; Niki et al., 2004). Because granuloma formation is
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principally a focal inflammatory response toMtb infection, the key

role of IL-1a in driving cell-cell cross-talk might be an essential

function of this cytokine to ensure host protection and pathogen

control. In this context, although our study provides direct evi-

dence that IL-1a-deficient mice failed to control Mtb replication

at the level of individual infected cells, this defect manifests itself

only in vivo and is not cell intrinsic. Indeed, Mtb bacilli replicated

in vitro with identical efficacy in bone-marrow-derived macro-

phages harvested from either WT or Il1a�/� mice. Our findings

comparing Il1a�/� and Il1b�/�mice seem tocontradict previously

reported data, which demonstrate that IL-1b-deficient mice are

highly susceptible to Mtb and died within 4 weeks p.i., similar to

IL-1RI-deficient mice (Mayer-Barber et al., 2010). In our study

and the study reported byMayer-Barber, the specific inactivating

mutations of Il1b are distinct (Horai et al., 1998; Shornick et al.,

1996) and might explain the discrepancy between our findings.

Clearly, understanding the mechanistic role of IL-1- and TNF-

driven cell-cell crosstalk in triggering innate mechanisms of host

resistance to Mtb can provide the rationale for the development

of approaches and drugs to limit the incidence of both progres-

sive and latent tuberculosis through modulating pathways of

innate immunity.

EXPERIMENTAL PROCEDURES

Experimental Animals

All studies were conducted in accordancewith the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and the Institutional Animal

Care and Use Committee guidelines of the University of Washington and

Seattle Biomedical Research Institute where all the work involving animals

was conducted. C57BL/6 mice were purchased from Charles River. Il1r1�/�

and Tnf�/�micewerepurchased fromJacksonLaboratory.Casp1�/�Casp11�/�

mice were kindly provided by Dr. R. Flavell (Yale University) and described in

Kuida et al. (1995), and Il1a
�/�

and Il1a�/�Il1b�/� mice were described in Horai

et al. (1998). Il1b�/� mice were described in Shornick et al. (1996). All mice

were on C57BL/6 genetic background, matched by age, and housed in spe-

cific-pathogen-free facilities.

Bacterial Infection

Stock of Mtb strains H37Rv, H37Rv::pBP10 (Gill et al., 2009), Erdman, or

W-Beijing SA161 were sonicated before use, and mice were infected in an

aerosol infection chamber (Glas-Col). To determine the Mtb burden, at indi-

cated times the left lung of each mouse was homogenized in PBS with

0.05% Tween 80. 10-fold serial dilutions were made in PBS with 0.05% Tween

80 and plated on Mitchison 7H10 plates. Colonies were counted after 21 days

of incubation at 37�C, and CFUs per organ were determined. Approximately

100 CFUs were deposited in the lungs of each mouse upon initial infection.

Mice were sacrificed when the body weight declined by 20%, compared to

the body weight of each animal at the day of infection.

Histology and Immunofluorescence Staining

For hematoxylin and eosin, acid-fast Kinyoun’s, and electron microcopy

studies, the right lung was excised, fixed in 4% paraformaldehyde (PFA) for

1 week at room temperature, embedded in paraffin, and sectioned by micro-

tome in consecutive sectionsof 5mm.For confocal immunofluorescence, stain-

ingwasperformedon frozen sections. ForPI analyses, dry frozen sectionswere

evaluated under a fluorescent microscope without further processing.

Cell Isolation, Staining, and Flow Cytometry

In brief, single-cell suspensions of intraparenchymal lung lymphocytes were

stained at saturating conditions using antibodies specific for CD3 (145-

2C11), CD4 (RM4-5), CD8 (53-6.7), CD11c (HL), CD11b (M1/70), Gr-1 (RB6-

8C5), CD45.2 (104), CD45.1 (A20), Ly-6C (HK1.4), Ly-6G (1A8), or CD40

(1C10), all from BD Biosciences. IFN-g and TNF intracellular staining was per-
Imm
formed using a kit as instructed by the manufacturer (BD), with minor modifi-

cations. For direct ex vivo detection of IFN-g, lung cells were isolated in the

presence of Brefeldin A (Sigma) and staining for surface markers and intracel-

lular IFN-g was performed as described, without in vitro restimulation. A min-

imum of 100,000 live cells per sample was acquired on an LSRII instrument

with the FACSDiva software (BD Biosciences). The samples were then

analyzed by Flowjo Software (Tree Star). TNF-RI and mCherry analyses were

done using CD64 and CD11c-gating approach (Figure S1A). ROS staining

was analyzed using alternate CD11b andCD11c-gating approach (Figure S1D)

to avoid spectral overlap between ROX reagent and CD64 Ab staining.

Detection of ESAT-64–17- and TB10.44–11-Specific Cells

PE-labeled MHC class II tetramers (I-Ab) containing the stimulatory residues 4

to 17 (QQWNFAGIEAAASA) of the early secreted antigenic target 6 kD (ESAT-

6) of Mtb and APC-labeled MHC class I tetramers (Kb) containing the stimula-

tory residues 4 to 11 (IMYNYPAM) of the low-molecular-weight protein antigen

TB10.4 of Mtb (obtained from the NIH Tetramer Core Facility) were used to

detect Mtb-specific CD4+ and CD8+ T cells, respectively.

Statistical Analysis

All experiments were repeated at least twice and a minimum number of sam-

ples analyzed per each experimental group was equal to three or more. Re-

sults are expressed as mean and standard error. Unless otherwise indicated,

Student’s unpaired two-tailed t test was used for comparing experimental

groups, with p < 0.05 considered significant.
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